Photo Credit: David Garb Photography
Bar Ilan University Ph.D. student Tikai Chang working on a dilution refrigerator that's used to cool down samples to a few millidegrees above absolute zero, January 2023.

Some two decades ago, it was shown theoretically that quantum computers could easily solve certain computationally-demanding problems like factoring large numbers into prime numbers or searching efficiently in databases. These possibilities have triggered intense experimental efforts toward the physical realization of scalable quantum processors (making it possible to increase the size of their quantum register).

Superconducting transmon qubits are today considered an essential building block of these processors. Over the years, the fidelity of transmons (like their ability to make calculations without errors) has constantly improved, allowing for the recent race of tech giants such as IBM, Amazon, and Google to demonstrate quantum supremacy.

Advertisement




As the processors become larger and larger, the questions of fidelity and scalability of such systems become more and more stringent and noticeable. In particular, transmon qubits are weakly non-linear objects, which intrinsically limits their fidelity and brings concerns about scalability due to problems of frequency crowding (IBM Unveils 400 Qubit-Plus Quantum Processor and Next-Generation IBM Quantum System Two).

Dr. Michael Stern and co-workers from the Department of Physics and Quantum Entanglement Science and Technology (QUEST) Center at Bar Ilan University in Israel are attempting to build superconducting processors based on a different type of circuit called superconducting flux qubits.

A flux qubit is a micron-sized superconducting loop where electrical current can flow clockwise or counter-clockwise, or in a quantum superposition of both directions. Contrary to transmon qubits, these flux qubits are highly non-linear objects and can thus be manipulated on very short time scales with high fidelity.

The main drawback of flux qubits, however, is that they are particularly difficult to control and fabricate. This leads to sizeable irreproducibility and has limited their use in the industry until now to quantum annealing optimization processes such as the ones realized by D-Wave.

Using a novel fabrication technique and state-of-the-art equipment, a group led by Dr. Stern at Bar Ilan University in collaboration with Prof. David Jamieson from the University of Melbourne, Australia, has successfully overcome a significant hurdle in solving this paradigm. In a paper just published in Physical Review Applied, Dr. Stern and his Ph.D. student Tikai Chang reveals a novel method to control and fabricate flux qubits with unprecedented long and reproducible coherence times.

“We have recorded significant improvement in the control and reproducibility of these qubits. This reproducibility enabled us to analyze the factors that impede coherence times and systematically eliminate them,” says Dr. Stern. “This work paves the way for many potential applications in the fields of quantum hybrid circuits and quantum computation,” he concludes.

This research was supported by the Israel Science Foundation.

Advertisement

SHARE
Previous articleDad Goes Transgender to Gain Custody of Kids
Next articleKfar Saba Woman Suffers Cardiac Arrest, Saved by United Hatzalah Volunteer EMT
David writes news at JewishPress.com.